Rational
Lesson 8: Linear Equations in Disguise

* Use crass -multiplication

$$
\frac{a}{b}>\frac{c}{d}
$$

Classwork
Example 3

$$
a d=b c
$$

Can this equation be solved?

Example 4
Can this equation be solved?

$$
\text { common } \mid
$$

$$
\begin{aligned}
& \left(\frac{6+x}{\left(x+\frac{2}{3}\right)^{\frac{3}{6}}}\right. \\
& 8(6+x)=3\left(7 x+\frac{2}{3}\right)
\end{aligned}
$$

$$
\begin{aligned}
& (3 x+9)=7(8) \\
& \begin{array}{r}
30 \pm 2=\begin{array}{c}
56 \\
-6 \\
\frac{3 x}{3}
\end{array}=\frac{47}{3}
\end{array} \\
& x=15.7 \quad \text { engage }^{\text {ny }}
\end{aligned}
$$

$$
\begin{aligned}
& \frac{(5+2 x)}{(3 x-1)} \geqslant \frac{6}{7} \\
& 7(5+2 x)=6(3 x-1) \\
& 35 \pm 14 \times=18(x)-6 \\
& 35=4 x+6 \\
& \pm 6 \\
& \frac{41}{4}=\frac{-4 x}{9} \\
& 10.25=x
\end{aligned}
$$

$$
\begin{aligned}
\frac{(2 x+1)}{9} & \neq \frac{(1-x)}{6} \\
6(2 x+1) & =9(1-x) \\
\frac{128)+6}{+9 x} & 9+9(x) \\
21 x+\underline{6} & =\frac{96}{9} \\
\frac{218}{21} & =\frac{3}{21} \\
x & =\frac{1}{7} \text { or } 0.14
\end{aligned}
$$

Example 5 Ratios of corresponding segments ara equal.

in the diagram below, $\triangle A B C \sim \triangle A^{\prime} B^{\prime} C^{\prime}$. Using what we know about similar triangles, we can determine the value of x

Solve the following equations of rational expressions, if possible.

1. $\frac{2 x+1}{9}=\frac{1-x}{6}$

COMMON	Lessong: Date:	Linear Equations in Disguise 11/19/14	engage ${ }^{\text {ny }}$

$$
3(x-1)-8=4(1+x)+5
$$

2. $\frac{5+2 x}{3 x-1}=\frac{6}{7}$
3. $\frac{x+9}{12}=\frac{-2 x-\frac{1}{2}}{3}$
4. $\frac{8}{3-4 x}=\frac{5}{2 x+\frac{1}{4}}$

COMMON	$\text { Lesson } 8:$ Date	Linear Equations in Disguise 11/19/14	engage ${ }^{\text {ny }}$
隹comomix	-men		

Lesson Summary

Some proportions are linear equations in disguise and are solved the same way we normally solve proportions.
When multiplying a fraction with more than one term in the numerator and/or denominator by a number, put the expressions with more than one term in parentheses so you remember to use the distributive property when transforming the equation. For example:

$$
\begin{aligned}
\frac{x+4}{2 x-5} & =\frac{3}{5} \\
5(x+4) & =3(2 x-5) .
\end{aligned}
$$

The equation $5(x+4)=3(2 x-5)$ is now clearly a linear equation and can be solved using the properties of equality.

Problem Set
Solve the following equations of rational expressions, if possible. If the equation cannot be solved, explain why

1. $\frac{5}{6 x-2}=\frac{-1}{x+1}$
2. $\frac{4-x}{8}=\frac{7 x-1}{3}$
3. $\frac{3 x}{x+2}=\frac{5}{9}$
4. $\frac{\frac{1}{2} x+6}{3}=\frac{x-3}{2}$
5. $\frac{7-2 x}{6}=\frac{x-5}{1}$
6. $\frac{2 x+5}{2}=\frac{3 x-2}{6}$
7. $\frac{6 x+1}{3}=\frac{9-x}{7}$
8. $\frac{\frac{1}{3} x-8}{12}=\frac{-2-x}{15}$
9. $\frac{3-x}{1-x}=\frac{3}{2}$
10. In the diagram below, $\triangle A B C \sim \triangle A^{\prime} B^{\prime} C^{\prime}$. Determine the lengths of $A C$ and $B C$

