Lesson 28: Another Computational Method of Solving a Linear

System

Classwork
Example 1
Use what you noticed about adding equivalent expressions to solve the following system by elimination.

$$
\left\{\begin{array}{l}
6 x-5 y=21 \\
2 x+5 y=-5
\end{array}\right.
$$

Example 2
Solve the following system by elimination.

$$
\left\{\begin{array}{l}
-2 x+7 y=5 \\
4 x-2 y=14
\end{array}\right.
$$

$$
\begin{array}{rlrl}
-1 & \left\{\begin{aligned}
x+y & =3 \\
2 x+y & =4
\end{aligned}\right. & \begin{aligned}
-x-y & =-3 \\
2 x+y & =4
\end{aligned} \\
\hdashline x & =1 \\
-2 x-2 y & =-6 \\
2 x+y & =4 \\
-1 y & =-2 \\
y & =2 & & (1,2)
\end{array}
$$

2. $\left\{\begin{array}{c}x-4 y=7 \\ 5 x+9 y=6\end{array}\right.$
3. $\left\{\begin{array}{c}2 x-3 y=-5 \\ 3 x+5 y=1\end{array}\right.$
```
Lesson Summary
S Systems of linear equations can be solved by eliminating one of the variables from the system. One way to 
one another.
Example: Solve the system {l}\begin{array}{l}{y=3x-4}\\{y=2x+1}
Since both equations of the system are equal to }y\mathrm{ , then we can write and solve the equation:
                    3x-4=2x+1
Another way to ellminate a variable is by multiplying each term of an equation by the same constant to make an
equivalent equation. Then use the equivalent equation to eliminate one of the variables and solve the system.
Example: Solve the system {}{\begin{array}{l}{2x+y=8}\\{x+y=10}
Multiply the second equation by -2 to eliminate the }
                                    -2(x+y=10)
                                    -2x-2y=-2
Now we have the system {}\begin{array}{rl}{2x+y}&{=8}\\{-2x-2y}&{=-20}
When the equations are added together, the x is eliminated
                        2x+y-2x-2y=8+(-20)
                        y-2y=8+(-20)
Once a solution has been found, verify the solution graphically or by substitution.
```

Problem Set
Determine the solution, if it exists, for each system of linear equations. verify your solution on the coordinate plane.

$$
\mathscr{\chi}\left\{\begin{array}{l}
\frac{1}{2} x+5=y \\
2 x+y=1
\end{array}\right.
$$

(2.) $\left\{\begin{array}{l}9 x+2 y=9 \\ -3 x+y=2\end{array}\right.$
3. $\left\{\begin{array}{l}y=2 x-2 \\ 2 y=4 x-4\end{array}\right.$

CORE	$\begin{aligned} & \text { Lesson 2s: } \\ & \text { Date: } \end{aligned}$	Another Computational Method of Solving a Uinear System 11/19/14	engage ${ }^{\text {ny }}$
		4 (ब)[mesa	

